Robot | Path | Permission |
GoogleBot | / | ✔ |
BingBot | / | ✔ |
BaiduSpider | / | ✔ |
YandexBot | / | ✔ |
# robots.txt for pai.de User-agent: Googlebot User-agent: BingBot User-agent: DuckDuckBot Allow: /.cm4all/mediadb/ Allow: /.cm4all/sysdb/ Allow: /.cm4all/uproc.php/ Disallow: /.cm4all/ Disallow: *meta_robots-noindex User-agent: * Crawl-delay: 10 Allow: /.cm4all/mediadb/ Allow: /.cm4all/sysdb/ Allow: /.cm4all/uproc.php/ Disallow: /.cm4all/ Disallow: *meta_robots-noindex Sitemap: https://pai.de/sitemap.xml |
Title | PAI - |
Description | PAI Private Arithmetics Reference to publications and introduction to precise object-language and metalanguage of mathematics (e.g. geometry and natural |
Keywords | Geometry, Euclid, Noneuclid, Lobachevsky, Funcish, Mencish, Church’s thesis, radical number, Perron |
WebSite | pai.de |
Host IP | 80.150.6.143 |
Location | Germany |
Site | Rank |
paiskincare.de | 0 |
Euro€1,102
Zuletzt aktualisiert: 2022-10-04 17:31:23
pai.de hat Semrush globalen Rang von 37,457,401. pai.de hat einen geschätzten Wert von € 1,102, basierend auf seinen geschätzten Werbeeinnahmen. pai.de empfängt jeden Tag ungefähr 551 einzelne Besucher. Sein Webserver befindet sich in Germany mit der IP-Adresse 80.150.6.143. Laut SiteAdvisor ist pai.de sicher zu besuchen. |
Kauf-/Verkaufswert | Euro€1,102 |
Tägliche Werbeeinnahmen | Euro€21,489 |
Monatlicher Anzeigenumsatz | Euro€7,163 |
Jährliche Werbeeinnahmen | Euro€551 |
Tägliche eindeutige Besucher | 551 |
Hinweis: Alle Traffic- und Einnahmenwerte sind Schätzungen. |
Host | Type | TTL | Data |
pai.de. | A | 21600 | IP: 80.150.6.143 |
pai.de. | AAAA | 86399 | IPV6: 2003:2:2:15:80:150:6:143 |
pai.de. | NS | 86400 | NS Record: dns02-tld.t-online.de. |
pai.de. | NS | 86400 | NS Record: dns01-tld.t-online.de. |
pai.de. | MX | 86400 | MX Record: 10 smtp-01.tld.t-online.de. |
pai.de. | MX | 86400 | MX Record: 10 smtp-02.tld.t-online.de. |
PAI Private Arithmetics Institute Natural Numbers, Recursion, Geometry, Symmetry, Axioms, Logic, Metalanguage and more Dahoam Author Past Future Geometries of O Recursion Church’s thesis ... Axiomatic set theory ... Why PAI Private Arithmetics Institute ? A critical analysis of the connection between logics and mathematics shows that the foundations of mathematics often are not treated thoroughly. It is the aim of PAI to distribute a method and precise languages that adhere to the following principles in so-called Bavaria notation : Clear distinction of language levels - supralanguage (English) - metalanguage (Mencish) - object-language (Funcish, obeying the principle of context-independence) Clear distinction of systems, that are called - abstract calcules (purely axiomatic) - concrete calcules (at most recursive) Clear distinction of logics with respect to types - first order ( e.g. natural numbers, rational numbers, radical numbers i.e. with roots) - higher order (e.g. real |
HTTP/1.1 301 Moved Permanently content-type: text/plain location: https://pai.de/ content-length: 26 date: Tue, 04 Oct 2022 08:57:44 GMT Set-Cookie: TS611e403c027=083c9557bcab2000ddf7ef842cf6c493ba17e8823653e813dc894a79b5caf44727ac2c59a086b170085cf4ae201130003c4b712eead991c2798663bb02e389a4954ae92fd923b9723ae2ed757fd4388489bd3a35eb71eadcfd372cfe6699affd; Path=/ HTTP/2 200 cache-control: no-store content-type: text/html; charset=utf-8 date: Tue, 04 Oct 2022 08:57:45 GMT p3p: CP="CAO PSA OUR" server: CM4all Webserver set-cookie: sid5832=d40d3112ca21a8e13890a3db99ec9a0f; HttpOnly; Path=/; Version=1; Discard |